Диэлектрические материалы. Тангенс угла диэлектрических потерь — страница 5

  • Просмотров 31912
  • Скачиваний 1890
  • Размер файла 60
    Кб

Продолжительность старения t связана с абсолютной температурой старения T зависимостью вида где А и В - величины, постоянные для данного материала и данных условий старения. Помимо температуры существенное влияние на скорость старения могут оказать изменение давления воздуха или концентрации кислорода, присутствие озона, являющегося более сильным окислителем, чем кислород, а также различных химических реагентов, ускоряющих

или замедляющих старение. Тепловое старение ускоряется от освещения образца ультрафиолетовыми лучами, воздействия электрического поля, механических нагрузок и т.п. Для ряда электроизоляционных материалов, в особенности хрупких, весьма важна стойкость по отношению к резким сменам температуры (термоударам), в результате которых в материале могут образовываться трещины. В результате испытаний устанавливается стойкость

материала к тепловым воздействиям, причем она в различны случаях может быть неодинаковой: например, материал, выдерживающий кратковременный нагрев до некоторой температуры, может оказаться неустойчивым, по отношению к тепловому старению при длительном воздействии даже при более низкой температуры и т.п. как указывалось, испытание на действие повышенной температуры иногда приходится указывать с одновременным воздействием

повышенной влажности воздуха или электрического поля. Холодостойкость. Во многих случаях эксплуатации важна холодостойкость, т.е. способность изоляции работать без ухудшения эксплуатационной надежности при низких температурах, например от -60 до -70° С. При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются, однако многие материалы, гибкие и эластичные в нормальных условиях, при низких

температурах становятся хрупкими и жесткими, что создает затруднения для работы изоляции. Испытания электроизоляционных материалов и изделий из них на действие низких температур нередко проводятся при одновременном воздействии вибраций. Теплопроводимость. Практическое значение теплопроводимости объясняется тем, что тепло, выделяющееся вследствие потерь мощности в окруженных электрической изоляции проводниках и

магнитопроводах, а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы. Теплопроводимость влияет на электрическую прочность при тепловом пробое и на стойкость материала к тепловым импульсам. Теплопроводность материалов характеризуют теплопроводностью gт, входящей в уравнение Фурье где, ∆Pt - мощность теплового потока сквозь площадку ∆S, нормальную к потоку , dT/dl -