Число как основное понятие математики — страница 4

  • Просмотров 3165
  • Скачиваний 252
  • Размер файла 55
    Кб

Зенон Элейский (IV в. до н. э.) в своих парадоксах – до бесконечности ∞. 1.1. Функции натуральных чисел Натуральные числа имеют две основные функции: q  характеристика количества предметов; q  характеристика порядка предметов, размещенных в ряд. В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.). Долго и трудно человечество добиралось до 1-го

уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ∞. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи… 2.    Рациональные числа 2.1. Дробные числа 2.1.1. О происхождении дробей С возникновением представлений о целых числах возникали представления и о частях единицы, точнее, о

частях целого конкретного предмета. С появлением натурального числа n возникло представление о дроби вида 1/n, которая называется сейчас аликвотной, родовой или основной. Чтобы выяснить вопрос о происхождении дроби, надо остановиться не на счете, а на другом процессе, который возник со стародавних времен, - на измерении. Исторически дроби возникли в процессе измерения. В основе любого измерения всегда лежит какая-то величина

(длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей. Так возникали первые конкретные дроби как определенные части каких-то определенных мер. Только гораздо позже названиями этих

конкретных дробей начали обозначать такие же самые части других величин, а потом и абстрактные дроби. 2.1.2. Дроби в Древнем Риме Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Они остановили свое внимание на мере «асс», который у римлян служил основной единицей измерения массы, а также денежной единицей. Асс делился на двенадцать частей – унций. Из

них складывали все дроби со знаменателем 12, то есть 1/12, 2/12, 3/12… Так возникли римские двенадцатеричные дроби, то есть дроби, у которых знаменателем всегда было число 12. Вместо 1/12 римляне говорили «одна унция», 5/12 – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной. Сейчас «асс» - аптекарский фунт. 2.1.3. Дроби в Древнем Египте Первая дробь, с которой познакомились люди, была, наверное,