Численное интегрирование определённых интегралов — страница 3

  • Просмотров 3517
  • Скачиваний 286
  • Размер файла 82
    Кб

смысл определённого интеграла, который рассмотрен выше. Формул приближённого интегрирования существует много. В данной курсовой работе будет рассмотрено три метода приближённого интегрирования: метод трапеций, метод прямоугольников и метод Симпсона. 1. Формула прямоугольников Теперь рассмотрим первый вид приближённого вычисления: требуется вычислить определённый интеграл: Пусть на отрезке [a,b] задана непрерывная функция

y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0,x1,x2,…,xn=b на n равных частей длины Δх, где Δх=(b-a)/n. y=f(x) SHAPE * MERGEFORMAT b=xn a=x0 x1 y0 y1 yn Обозначим через y0,y1,y2,…,yn-1,yn значение функции f(x) в точках x0, x1, x2…,xn, то есть, если записать в наглядной формуле: Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn). В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид (на рис. выделена). Составим суммы: y0Δx+ y1Δx1+

y2Δx2…+yn-1Δx; Y1Δx+ y2Δx+…+ynΔx Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием Δх, которое является шириной прямоугольника, и длиной выраженной через yi: Sпр=a*b=yiΔx. Каждая из этих сумм является интегральной суммой для f(x) на отрезке [a,b], и равна площади ступенчатых фигур, а значит приближённо выражает интеграл. Вынесем Δx=(b-a)/n из каждой суммы, получим: f(x)dx≈Δx(y0+y1+…+yn-1);

f(x)dx≈Δx(y1+y2+…+yn). Выразив x, получим окончательно: f(x)dx≈((b-a)/n)(y0+y1+…+yn-1);(3) f(x)dx≈((b-a)/n)(y1+y2+…+yn);(3*) Это и есть формулы прямоугольников. Их две, так как можно использовать два способа замены подынтегральной функции. Если f(x)- положительная и возрастающая функция, то формула (3) выражает S фигуры, расположенной под графиком, составленной из входящих прямоугольников, а формула (3*)- площадь ступенчатой фигуры, расположенной под

графиком функции составленной из выходящих треугольников. Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления) Pnp=, где Результат полученный по формуле (3) заведомо даёт большую площадь прямоугольника, так же по формуле (3*) даёт заведомо меньшую площадь, для получения среднего результата используется формула средних прямоугольников: (3**)

2.Формула трапеций. Возьмём определённый интеграл ∫f(x)dx, где f(x)- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию (на рисунке 2 красным цветом), звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n). SHAPE * MERGEFORMAT a b x1 y0 y1 yn Заменившая