Балансовая модель — страница 3

  • Просмотров 7653
  • Скачиваний 466
  • Размер файла 25
    Кб

быть записана компактнее, если использовать матричную форму записи уравнений: _ _ _ Е·х - А·х = У , или окончательно _ _ ( Е - А )·х = У , ( 6' ) где Е – единичная матрица n-го порядка и 1-a11 -a12 … -a1n E - A= -a21 1-a22 … -a2n ………………… -an1 -an2 … 1-ann Уравнения ( 6 ) содержат 2n переменных ( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных. Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и

определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ). Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей: табл.2 № отрас Потребление Итого Конечный Валовый № затрат продукт выпуск отрас 1 2 0.2 0.4 1 100 160 260 240 500 0.55 0.1 2 275 40 315 85 400 Итого затрат 575 в k-ю 375 200 отрасль … 575 Пусть исполнение баланса за предшествующий период характеризуется данными,

помещенными в табл.2 Рассчитываем по данным этой таблицы коэффициенты прямых затрат: 100 160 275 40 а11 = –––– = 0.2 ; а12 = –––– = 0.4 ; а21 = –––– = 0.55 ; а22 = –––– = 0.1 500 400 500 400 Эти коэффициенты записаны в табл.2 в углах соответствующих клеток. Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2 х1 - 0.2х1 - 0.4х2 = у1 х2 - 0.55х1 - 0.1х2 = у2 Эта система двух уравнений может быть использована для определения х1 и х2 при заданных

значениях у1 и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д. Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800 и т.д. РЕШЕНИЕ БАЛАНСОВЫХ УРАВНЕНИЙ С ПОМОЩЬЮ ОБРАТНОЙ МАТРИЦЫ. КОЭФФИЦИЕНТЫ ПОЛНЫХ ЗАТРАТ. Вернемся снова к рассмотрению балансового уравнения ( 6 ). Первый вопрос, который возникает при его исследование, это вопрос о

существование при заданном векторе У>0 неотрицательного решения х>0, т.е. о существовании вектор-плана, обеспечивающего данный ассортимент конечного продукта У. Будем называть такое решение уравнения ( 6' ) допустимым решением. Заметим, что при любой неотрицательной матрице А утверждать существование неотрицательного решения нельзя. Так, например, если 0.9 0.8 0.1 -0.8 и уравнение ( 6' ) А= , то Е - А = 0.6 0.9 -0.6 0.1 запишется в виде 0.1 -0.8 х1 у1

или в развернутой форме -0.6 0.1 х2 у2 0.1х1 - 0.8х2 = у1 ( a ) -0.6х1 + 0.1х2 = у2 Сложив эти два уравнения почленно, получим уравнение -0.5х1 - 0.7х2 = у1 + у2, которое не может удовлетворяться неотрицательным значениям х1 и х2, если только у1>0 и у2>0 ( кроме х1=х2=0 при у1=у2=0 ). Наконец уравнение вообще может не иметь решений ( система ( 6 ) – несовместная ) или иметь бесчисленное множество решений ( система ( 6 ) – неопределенная ). Следующая теорема,