Балансовая модель — страница 2

  • Просмотров 7588
  • Скачиваний 465
  • Размер файла 25
    Кб

баланса за предшествующий период определить исходные данные на планируемый период. Будем снабжать штрихом ( х’ik , y’i и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде. Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного

продукта, ассортиментным вектором : _ у = ( у1 , у2 , … , yn ) , ( 2 ) а совокупность значений x1 , x2 , … , xn ,определяющих валовый выпуск всех отраслей – вектор-планом : _ x = ( x1 , x2 , … , xn ). ( 3 ) Зависимость между двумя этими векторами определяется балансовыми равенствами ( 1 ). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х, т.к. кроме искомых неизвестных хk , содержат n­­­­2

неизвестных xik , которые в свою очередь зависят от xk. Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений : xik aik = ––– ( i , k = 1 , 2 , … , n ). xk Величины aik называются коэффициентами прямых затрат или технологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым

приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что x’ik xik ––– = ––– = aik = const ( 4 ) x’k xk Исходя из этого предложения имеем xik = aikxk , ( 5 ) т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому выпуску, или, другими словами, зависят линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют условием линейности прямых затрат.

Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу a11 a12 … a1k … a1n a21 a22 … a2k … a2n A= …………………. ai1 ai2 … aik … ain an1 an2 … ank … ann которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу

неотрицательной. Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1 Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель : x1 - ( a11x1 + a12x2 + … + a1nxn ) = y1 x2 - ( a21x1 + a22x2 + … + a2nxn ) = y2 ( 6 ) …………………………………… xn - ( an1x1 + an2x2 + … + annxn ) = yn , характеризующую баланс затрат - выпуска продукции, представленный в табл.1 Система уравнений ( 6 ) может