ATTENTIONAL CAPTURE Essay Research Paper ABSTRACTHow likely — страница 4

  • Просмотров 544
  • Скачиваний 9
  • Размер файла 21
    Кб

Search paradigm showing that when attention is focused on some other part of a display, an abrupt onset might not implicitly capture attention (Simon, 2000) . Implicit attentional capture in the Irrelevant Feature Search paradigm requires that attention must not be focused elsewhere. The static IB results are consistent with this notion and suggest that when attention is engaged elsewhere, new objects can fail to explicitly capture attention as well. However, the selective-looking results raise some problems for this explanation for the failure of attentional capture. In the selective-looking paradigm, observers are focusing on multiple objects and the unexpected object literally passes through the attended locations. Attention is distributed across the display, but focused on

other objects and events (Haines, 1991). Thus, failed attentional capture cannot be attributed to spatially focused attention (Yantis & Jonides, 1990). However, the more general notion of attentional engagement may help to explain both types of failed attentional capture. In both implicit and explicit paradigms, when attention is engaged, the likelihood of capture is reduced. In the static IB case and in the implicit search tasks, attention is often focused on a clearly defined spatial region and in selective-looking tasks, attention is engaged by objects and events. Do these two types of attentional engagement, location-based and object/event-based, have equivalent effects on capture? (Simons, 2000) In most real-world settings, observers are actively engaged in some task or

goal, and the degree of attentional engagement can vary substantially. For example, driving a car in traffic in a Canadian snowstorm will probably limit the focus of attention to a relatively small region, perhaps increasing the degree of engagement relative to driving under normal conditions. The degree of engagement may well influence the probability of both implicit and explicit attentional capture. Yet, no studies have looked at the effects of varying the level of attentional engagement on capture (Simons, 2000). Future studies are clearly needed to explore implicit and explicit attentional capture while systematically varying the degree and type of attentional engagement. Taken together, the similarity of the results from the static IB paradigm and the selective-looking

paradigm suggests that inattentional blindness may be a pervasive aspect of visual perception. More importantly, the results suggest that the appearance of a new object does not automatically capture explicit attention. The study of attentional capture is often aimed at explaining, for example, how we notice when a pedestrian steps in front of our car. Explorations of the causes of automobile accidents are consistent with the claim that such events do not explicitly capture attention. According to Statistics Cananad, nearly 50% of fatal automobile accidents are attributed to some driver-related factor, including inattention and distraction. In other words, drivers often do not see salient and important objects. This fact can be described in terms of attentional capture. Simply

put, if people are attending to their driving (e.g. the car in front of them, road signs, etc.), and if they do not expect pedestrians to step in front of the car, they are unlikely to see them. In order to understand more fully the conditions that lead to attentional capture, further studies are needed that explore not just the effects of implicit attentional capture on performance, but also the interaction between the observer’s expectations, the degree of attentional engagement, and the likelihood of explicit attentional capture. Following is a brief draft proposal for possible further study on the topic of attentional capture, inattentional blindness, and their practical implications for improving driver awareness of the road. Although we have not arrived at a full

understanding of implicit and explicit capture of attention, this student believes that attention can be trained. In Folk et al. (1994) it was observed that there is an automatic orienting of attention, but this is contingent on the task at hand, rather than stimulus driven. In other words, a cue will catch attention only when it shares a critical feature with the target. Recall that Folk et al. was able to expand the attentional set of subjects in their colour-target and onset-target experiment. Perhaps then we may be able to expand the attentional set of drivers by a procedural manipulation of the cue to match the target. METHOD: Participants For this study, a subject pool of at least 120 subjects, with ages ranging from 16 to 80, would serve as ideal study subjects. A normal