Арифметика сверхбольших натуральных чисел в параллельных вычислительных системах

  • Просмотров 615
  • Скачиваний 47
  • Размер файла 64
    Кб

1 АРИФМЕТИКА СВЕРХБОЛЬШИХ НАТУРАЛЬНЫХ ЧИСЕЛ В ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ Макоха А.Н., Зуй Б. Ю. В настоящее время существует необходимость проводить вычисления с очень большими целыми числами (то есть с числами, не помещающимися в разрядную сетку регистров АЛУ процессора) в таких областях как кодирование информации, криптография, физика, астрономия и т. д. Архитектура 32-х разрядных систем позволяет обрабатывать

числа в максимальном диапазоне 0..4294967295. Но это слишком узкий диапазон натуральных чисел для решения многих прикладных задач. Для расширения диапазона разработчики программного обеспечения предлагают разнообразные методы решения данной задачи. Средства для работы с большими целыми числами имеются в таких программных пакетах как Java, Си, Perl. Эффективным способом выполнения операций над сверхбольшими целыми числами является

их представление в системе остаточных классов, где нет переносов из младших разрядов в старшие [3]. Однако здесь возникает своя проблема нахождения остатков от деления сверхбольшого числа на основания системы остаточных классов. Диапазон представления натуральных чисел можно значительно расширить, реализовав несложные алгоритмы операций над данными на языке Ассемблера [1], увеличив при этом длину слова в десятки раз.

Разработаны алгоритмы представления и хранения в памяти ЭВМ больших целых чисел в виде связанных списков [2]. Пусть () – список общего вида. Компьютерное представление списка состоит из n ячеек, связанных через их поля ссылок, вместе с предполагаемыми уже данными представлениями каждого из значений xi , являющихся в свою очередь списками. В настоящей работе предлагаются алгоритмы выполнения арифметических операций над

сверхбольшими натуральными числами, представленными в виде списков (последовательности бит или последовательности десятичных знаков), с помощью относительного распараллеливания этих операций на многопроцессорных системах. Пусть , , – сверхбольшие натуральные числа. Разобьем эти числа на слова по основанию , где - длина слова: , , , при этом коэффициенты . Так как будут рассматриваться числа без знака, то для всех рассуждений