Анри Пуанкаре — страница 11

  • Просмотров 5187
  • Скачиваний 40
  • Размер файла 51
    Кб

основателей группы Бурбаки, сказать: "Гений Пуанкаре эквивалентен гению Гаусса и столь же универсален. Он превосходил всех математиков своего времени". В области математической физики Пуанкаре исследовал трехмерные колебания, вывел основную формулу теории распространения волн (в задаче о дифракции радиоволн), изучил ряд задач теплопроводности и теории потенциалов, ему принадлежат также труды по обоснованию принципа

Дирихле. Для функций нескольких комплексных переменных он построил теорию интегралов, аналогичных интегралам Коши, показал, что всюду мероморфная функция двух комплексных переменных является отношением двух целых функций. Основные результаты Анри Пуанкаре в области небесной механики Когда Пуанкаре был еще ребенком, величественный спектакль звездной ночи пленил его младенческий ум. Позже он напишет в одной из своих статей:

"Звезды шлют нам не только видимый и ощущаемый свет, действующий на наше плотское зрение; от них исходит также иной, более тонкий свет, проясняющий наш ум". Вероятно именно этот утонченный "свет" постигаемой истины увидел Пуанкаре своим внутренним зрением, когда интерес его обратился к законам движения небесных тел. В январе 1889 года на международный конкурс, объявленный королем Оскаром II, было представлено одиннадцать

работ. Жюри конкурса признало лучшими две из них. Одна работа принадлежала Полю Аппелю и называлась "Об интегралах функций со множителями и об их применении к разложению абелевых функций в тригонометрические ряды". Другая работа имела в качестве девиза строчку из латинского стихотворения: "Nunquam praescriptos transibunt sidera fines" ("Никогда не перейдут светила предписанных границ"). Это был мемуар Анри Пуанкаре, который

представлял собой обширное исследование задачи трех тел. Обе работы были удостоены премии на равных основаниях. Друзья разделили славу и почести. Подобно Эйлеру, Пуанкаре за короткий срок переосмыслил и обновил складывавшийся в течение двух столетий математический аппарат небесной механики, использовав самые последние достижения математики. В трехтомном трактате "Новые методы небесной механики" (1892-1899) Пуанкаре

исследовал периодические и асимптотические решения дифференциальных уравнений, доказал асимптотичность некоторых рядов, являющихся решениями дифференциальных уравнений с частными производными, ввел методы малого параметра, метод неподвижных точек. Ему принадлежат также важные для небесной механики труды об устойчивости движения и о фигурах равновесия гравитирующей вращающейся жидкости. Метод "интегральных