Анализ регрессии в изучении экономических проблем — страница 11

  • Просмотров 5545
  • Скачиваний 42
  • Размер файла 174
    Кб

при добавлении новой объясняющей переменной тогда и только тогда, когда t-статистика для этой переменной по модулю больше единицы. Поэтому добавление в модель новых объясняющих переменных осуществляется до тех пор, пока растет скорректированный коэффициент детерминации. Обычно в эконометрических пакетах приводятся данные как по R2, так и по R2, являющиеся суммарными мерами общего качества уравнения регрессии. Однако не

следует абсолютизировать значимость коэффициентов детерминации. Существует достаточно примеров неправильно специфицированных моделей, имеющих высокие коэффициенты детерминации (обсудим данную ситуацию позже). Поэтому коэффициент детерминации в настоящее время рассматривается лишь как один из ряда показателей, который нужно проанализировать, чтобы уточнить строящуюся модель. 2.8 Анализ статистической значимости

коэффициента детерминации После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов. Такой анализ осуществляется на основе проверки гипотезы об общей значимости − гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных: Н0: β1 = β2 = … = βm = 0. Если данная гипотеза не отклоняется, то делается

вывод о том, что совокупное влияние всех m объясняющих переменных Х1, Х2, …, Хm модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравнения регрессии − невысоким. Проверка данной гипотезы осуществляется на основе дисперсионного анализа − сравнения объясненной и остаточной дисперсий. Н0: (объясненная дисперсия) = (остаточная дисперсия), Н1: (объясненная дисперсия) > (остаточная

дисперсия). Для этого строится F-статистика: F= ∑ki2/m/∑ei2/(n-m-1)= ∑(yi-y)2/m/∑(yi-yi)2/(n-m-1) (2.37) где ∑ki2/m − объясненная дисперсия; ∑ei2/(n−m−1) − остаточная дисперсия. При выполнении предпосылок МНК построенная F-статистика имеет распределение Фишера с числами степеней свободы ν1 = = m, ν2 = n − m − 1. Поэтому, если при требуемом уровне значимости α Fнабл. > Fкр. = Fα;m;n−m−1 (где Fα;m;n−m−1 − критическая точка распределения Фишера), то Н0 отклоняется в

пользу Н1. Это означает, что объясненная дисперсия существенно больше остаточной дисперсии, а следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной Y. Если Fнабл. < Fкр. = Fα;m;n−m−1, то нет оснований для отклонения Н0. Значит, объясненная дисперсия соизмерима с дисперсией, вызванной случайными факторами. Это дает основания считать, что совокупное влияние объясняющих