Аналитическая геометрия — страница 4
t-нормирующий множитель. 2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону. Теорема: Пусть задано нормальное уравнение прямой xcos+ysin-P=0 и М1(x1;y1), тогда отклонение точки М1 = x1cos+y1sin-P=0 Задача: найти расстояние от точки М0(x0;y0) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x0cos+y0sin-P|. d=|Ах0+By0+C|/sqrt(A2+B2) ГИПЕРБОЛА. Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная Каноническое уравнение: Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1F2|=2c, М – произвольная точка гиперболы. r1, r2 – расстояния от М до фокусов; |r2-r1|=2a; a<c; , x2c2-2a2xc+a2=a2(x2-2xc+c2+y2) x2(c2-a2)-a2y2=a2(c2-a2) c2-a2=b2 x2b2-a2y2=a2b2 - каноническое ур-е гиперболы ПАРАБОЛА. Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой. Каноническое уравнение: Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат. |DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d; r=sqrt((x-p/2)2+y2); d=p/2+x Приравниваем и получаем: y2=2px - каноническое уравнение параболы ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ. 1. Определение: эксцентриситет – величина равная отношению с к а. е=с/а е эллипсв <1 (т.к. а>c) е гиперболы >1 (т.к. с>a) Определение: окружность – эллипс у которого а=b, с=0, е=0. Выразим эксцентриситеты через а и b: е эллипса является мерой его “вытянутости” е гиперболы характеризует угол раствора между асимптотами 2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a) D1: x= - a/e D2: x= a/e р=а(1-е2)/е – для эллипса р=а(е2-1)/е – для гиперболы ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ. Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы). Доказательство: для эллипса. r1/d1=e x|a|, xe+a>0 r1=xe+a d1 – расстояние от М(x,y) до прямой D1 xcos180+ysin180-p=0 x=-p x=-a/e бм=-x-a/e d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.) Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до
Похожие работы
- Рефераты