Алгоритмы сбора и предварительной обработки измерительной информации — страница 7

  • Просмотров 4248
  • Скачиваний 64
  • Размер файла 83
    Кб

могут изменяться практически мгновенно. В этом случае, как и при изменении пространственных координат, аргументы могут изменяться дискретно или непрерывно. Во втором случае значения аргументов и функций могут считываться с заданным шагом по аргументу или времени. Некоторые аргументы, например температура, влажность, химический состав, требуют для достижения заданного значения определенного времени. В этом случае алгоритм

сбора данных может предусматривать непрерывное измерение изменяющегося аргумента в пределах интересующего интервала значений. Изменение необязательно должно быть равномерным во времени, поскольку значения аргумента и значения функции могут фиксироваться с заданным шагом аргумента. Рассмотренные выше алгоритмы сбора первичной информации, за исключением дельта-модуляции, предполагают периодическую выдачу отсчетов

измеряемой физической величины. Однако любая регулярная система отсчетов может привести для определенных функций к систематическим погрешностям. Это можно проиллюстрировать простейшим примером. Пусть исследуемая функция — периодическая, целью измерения является определение ее постоянной составляющей а0, а отсчеты берутся с периодом Т0, кратным периоду исследуемого сигнала (рис. 3). Тогда в зависимости от фазового сдвига

между исследуемым сигналом и последовательностью отсчетов систематическая погрешность измерения постоянной составляющей будет лежать в пределах ±А независимо от числа усредняемых отсчетов. Устранить эту систематическую (при фиксированных временных соотношениях) погрешность можно, беря отсчеты в случайные моменты времени tj = jT0 + τj, где τj — независимые случайные величины, равномерно распределенные на интервале [0; Т0]. При

этом возникает случайная погрешность, уменьшающаяся с увеличением числа отсчетов. Такая процедура устранения влияния систематических факторов путем искусственного введения случайности в процесс исследования называется рандомизацией. Примеры таких задач можно привести из самых различных областей. В свое время, когда разрядность АЦП не превышала восьми, усредняя несколько последовательных результатов преобразования,

путем рандомизации искусственно увеличивали разрядность отсчетов. В теоретическом плане анализ погрешностей из-за дискретизации функции нескольких аргументов аналогичен анализу погрешностей из-за дискретизации по времени. В общем случае оценить качество дискретизации и принять решение о ее приемлемости можно, рассматривая оценки достоверности решаемых задач для разных методов дискретизации. При этом теоретически или