Алгоритмы и методы компоновки, размещения и трассировки радиоэлектронной аппаратуры — страница 5

  • Просмотров 5124
  • Скачиваний 339
  • Размер файла 64
    Кб

алгоритмов выступает высокое быстродействие их при решении задач компоновки. Основным недостатком последовательного алгоритма является неспособность находить глобальный минимум количества внешних связей (не анализируются возможные ситуации). Наибольшая эффективность метода последовательного разбиения графа имеет место, когда число вершин графа G значительно больше вершин в любой части разбиения. Итерационные алгоритмы

компоновки     Сущность данной группы алгоритмов заключается в выборе некоторого начального «разрезания» исходного графа на куски (вручную или с помощью последовательного метода компоновки) и последующего его улучшения с помощью итерационного парного или группового обмена вершин из различных кусков. При этом для каждой итерации осуществляется перестановка тех вершин, которая обеспечивает максимальное уменьшение

числа связей между кусками графа или максимальное улучшение другого выбранного показателя качества с учетом используемых ограничений (например, на максимальное число внешних ребер любого отдельно взятого куска). Найдем выражение для подсчета приращения числа ребер, соединяющих куски GA(XA,UA) и GB(XB,UB), при парном обмене вершин и Очевидно, что парная перестановка вершин xg и xh приведет к изменению числа только тех связывающих куски

GA(XA,UA) и GB(XB,UB) ребер, которые инцидентны этим вершинам. Общее число соединительных ребер между GA(XA,UA) и GB(XB,UB) , инцидентных xg и xh, до перестановки вершин определяют по матрице смежности следующим образом: где I и J – множества индексов вершин, принадлежащих XB и XA . В этом выражении первые два слагаемых определяют число ребер, соединяющих вершины xg с GB(XB,UB) и xh с GA(XA,UA), а наличие третьего члена обусловлено тем, что связь двух слагаемых

учитывалась дважды. После перестановки вершин xg и xh получим: Третий член выражения указывает на сохранение связи (xg, xh) после перестановки вершин. Следовательно, в результате перестановки xg и xh приращение числа ребер, соединяющих GA(XA,UA) и GB(XB,UB), Перестановка вершин целесообразна, если Если исходный граф G(X,U) задан матрицей смежности G(X,U) на k кусков эквивалентно разбиению матрицы A на k x k подматриц: SHAPE * MERGEFORMAT A11 A1j A1k Ar1 Arj Ark Ak1 Akj Akk A =

Операция парного обмена вершин xg и xh сводится к перестановке соответствующих строк и столбцов матрицы A. Так как сумма элементов любой подматрицы Arj определяет число ребер, связывающих Gr(Xr,Ur) и Gj(Xj,Uj), то процесс оптимального разрезания» графа G(X,U) на куски заключается в отыскании на каждой итерации таких парных перестановок строк и столбцов матрицы A, при которых максимизируется сумма элементов в диагональных подматрицах