Алгоритм решения Диофантовых уравнений
В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - великая теорема Ферма; - уравнение Пелля; - уравнения эллиптических кривых У2=X3+K, (У2=Х3-Х, У2=Х3-Х+1, У2=Х3+аХ+В); - иррациональные корни уравнения Х2-У2=1; - поиск Пифагоровых троек; - уравнение Каталана; - уравнение гипотезы Билля; Решение Диофантовых уравнений.. Лирическое отступление (ЛО) – 1. Всё началось с теоремы Ферма. В клубе фермистов оказался случайно, решал совершенно другую задачу, и неожиданно пришла идея ВТФ. Я даже не помнил её классическое написание – хn+уn=сn , формулу ВТФ написал в виде хn = уn + сn, а потом не стал переучиваться, т.к. привык к своему написанию формулы. ЛО – 2. При доказательстве ссылаюсь на закон распределения простых чисел. Можно было бы обойтись без упоминания оного. Просто сохранил историческую правду, т.к. лично для меня этот закон стал подсказкой. ЛО – 3. Этот же подход был применён для решения уравнения гипотезы Биля и решения других уравнений. Выводы получились интересными. Для себя обкатал этот метод на нескольких шуточных уравнениях. При профессиональном подходе, похоже, этот метод может дать как качественные выводы, так и количественные, окончательный же приговор этому методу будет сделан совместными усилиями. Великая теорема Ферма.Решение. – не имеет решений в целых числах при показателе степени n>2. Для доказательства данного утверждения было рассмотрено аналогичное функциональное уравнение. Чтобы получить функциональное уравнение надо обратиться к закону распределения простых чисел в ряду натуральных чисел. В таблице изображена матрица распределения составных чисел в ряду натуральных чисел. 4 +2 6 +2 8 +2 10 +2 12 +2 14 +2 16 +2 18 … +2 +3
Похожие работы
- Рефераты