Алгебраические числа — страница 4

  • Просмотров 5734
  • Скачиваний 460
  • Размер файла 51
    Кб

алгебраическими. Докажем это. (p, q, ÎN). Из равенства . Отсюда, возводя в квадрат, получим: Следовательно, я является корнем уравнения: все коэффициенты которого целые числа. В дальнейшем мы будем рассматривать только действительные алгебраические числа, не оговаривая этого каждый раз. Из f(x)=0 следует f(z)j(x)=0, где в качестве j(x) можно взять любой многочлен с целыми коэффициентами. Таким образом для любого алгебраического числа z, из

всех этих многочленов обычно рассматривают многочлен наименьшей степени. Определение 4: Число n называется степенью алгебраического числа z, если z есть корень некоторого многочлена n-ой степени с рациональными коэффициентами и не существует тождественно не равного нулю многочлена с рациональными коэффициентами степени, меньшей чем n, корнем которого является z. Если корень многочлена n-ой степени с целыми рациональными

коэффициентами z не является корнем ни одного тождественно неравного нулю многочлена с целыми коэффициентами степени меньшей чем n, то z не может быть корнем и тождественно неравного нулю многочлена с рациональными коэффициентами степени меньшей чем n, т.е. z – алгебраическое число степени n. Рациональные числа являются алгебраическими числами первой степени. Любая квадратическая иррациональность представляет собой

алгебраическое число 2-й степени, так как, являясь корнем квадратичного уравнения с целыми коэффициентами, она не является корнем какого-либо уравнения 1-й степени с целыми коэффициентами. Алгебраические числа 3-й степени часто называют кубическими иррациональностями, а 4-й степени биквадратическими иррациональностями. Пример: 1)        - алгебраическое число 3-й степени, т.е. кубическая иррациональность.

Действительно, это число есть корень многочлена 3-й степени с целыми коэффициентами x3-2=0 и не является корнем какого-либо многочлена 1-й или 2-й степени с целыми коэффициентами. Определение 5: Если алгебраическое число n-й степени z является корнем многочлена f(x)=xn+b1xn-1+ … +bn (n³1) (1) с рациональными коэффициентами, то f(x) называется минимальным многочленом для z. Таким образом, минимальным многочленом для z называется многочлен

наименьшей степени с рациональными коэффициентами и старшим коэффициентом, равном единице, корнем которого является z. Если вместо многочлена (1) взять какой-либо другой многочлен с рациональными коэффициентами степени n, корнем которого является z, то многочлен (1) может быть получен из него делением всех коэффициентов на старший член. Пример: 1)    Минимальным многочленом для является x3-2, так как корень этого многочлена