Аксиомы планиметрии — страница 3

  • Просмотров 6662
  • Скачиваний 82
  • Размер файла 34
    Кб

вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую". Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н.И. Лобачевский, Я. Бойяи и К.Ф. Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён

противоположным утверждением: "В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида. Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 г. На евклидовой плоскости проведём горизонтальную прямую. Эта прямая называется абсолютом (x). Точки евклидовой

плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией

конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского. Все аксиомы планиметрии Лобачевского непротиворечивы. Определение прямой следующее: "Неевклидова прямая - это полуокружность с концами на абсолюте или луч с

началом на абсолюте и перпендикулярный абсолюту". Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой и точки A, не лежащей на этой прямой, но и для любой прямой и любой не лежащей на ней точки A. За геометрией Лобачевского возникли и другие непротиворечивые геометрии: от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла

риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 - 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей - геометрией Евклида. Аксиомы планиметрии Аксиомы принадлежности Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не