Аксиоматика теории вероятностей

  • Просмотров 5117
  • Скачиваний 82
  • Размер файла 37
    Кб

Введение Математика – царица наук. Это выражение в своей жизни слышал, наверное, каждый человек. Образованный юрист тоже должен иметь представление о том, что такое высшая математика. Да, по роду своей деятельности ему не нужно выводить какие-либо формулы, высчитывать интегралы. Но все-таки знать, что такое синусы, косинусы, матрицы и другие математические определения ему необходимо. При этом не следует забывать, что школа

дает лишь элементарные математические знания, например, сложение и вычитание, умножение и деление, таблица умножения, то есть то, без чего человек не может обойтись в своей повседневной жизни. Наличие же высшего образования подразумевает под собой нечто большее, в частности, знания по высшей математике. В данной работе мы не будем углубляться в разнообразные математические термины, не станем интегрировать дифференциальные

уравнения, высчитывать матрицы. Мы рассмотрим теорию вероятностей, которая, на наш взгляд, наиболее приближена к юридическим наукам, потому что она развивает логическое мышление человека. Итак, мы дадим определение случайным событиям, познакомимся с вероятностью событий, узнаем статическое и классическое определение вероятности, заострим внимание на ограниченности классического определения, приведем примеры вычисления

вероятностей и сделаем выводы о проделанной работе. 1. Аксиоматика теории вероятностей 1.1 Краткая историческая справка Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI–XVII вв.). Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654–1705). Доказанная им теорема, получившая

впоследствии название «Закона больших чисел», была первым теоретическим обоснованием накопленных ранее фактов. Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др. Новый, наиболее плодотворный период связан с именами П.Л. Чебышева (1821–1894) и его учеников А.А. Маркова (1856–1922) и А.М. Ляпунова (1857–1918). В этот период теория вероятностей становится стройной математической наукой. Ее