Air Traffic Control Upgrades Essay Research Paper

  • Просмотров 190
  • Скачиваний 12
  • Размер файла 16
    Кб

Air Traffic Control Upgrades Essay, Research Paper Introduction It has been estimated that air traffic will double within the next ten years. Maintaining our current accident rate, with double the traffic, would mathematically lead to twice as many accidents as we currently experience every year. That prospect is unacceptable (UK and International Press). There has been obvious growing concern with our airspace due to the anticipated expected growth in air traffic in the years to come. These concerns are not unwarranted with technology increasing at a furious pace and sophisticated equipment becoming more and more available. This paper will discuss what is currently being done to meet the demanding needs of future air travel. The main focus will be on the Wide Area

Augmentation System (WAAS) in association to the concept of free flight, with respect to the Global Positioning System (GPS), and Air Traffic Control (ATC) automation. The ATC automation portion of this report will give specific attention to datalink applications, conflict probe, and next generation aviation safety. Wide Area Augmentation System (WAAS) The Federal Aviation Administration?s (FAA) WAAS is being developed as the next generation aviation navigation system. It will provide en route coverage through Category I precision approach capabilities by increasing the accuracy, availability, and integrity of signals from the U.S. Department of Defense?s Global Positioning System (GPS) satellites ( Raytheon 1998). Category I precision approaches are a decision height of 200 feet

and a runway visual range of 2,400 feet (1,800 feet with touchdown and centerline lighting). Before the WAAS can be fully understood, knowledge of the GPS system must be addressed. The information provided on GPS will be brief and its purpose is to supplement the understanding of the WAAS. GPS is constellation of 24 satellites that was declared operational in December 1993 and is used for navigation and mapping purposes by a wide variety of industries, including aviation (Hughes 1999). The GPS has three main components: the 24 satellites, the ground-based monitors, and the receivers. GPS offers two levels of service, Standard Positioning Service, and Precise Positioning Service (Flight Training 1998). The latter of the two is available for military use only. The Jet Propulsion

Laboratory (JPL) began to develop state-of ?the-art GPS receivers, a software component for the most sophisticated and accurate GPS analysis software available, and an experimental component where field measurements were made and GPS data were analyzed (Lichten 1997). Throughout the 1990?s JPL had been working on different ways to analyze the GPS data with minimal time. JPL realized that it would be possible to process the information in real time if a few dozen data-link ground sites could be established (Lichten 1997). This is the premise for which the WAAS is based on, providing real-time precise navigation capabilities to aircraft through the enhancement of GPS data. The following graphical representation is the system the Federal Aviation Administration (FAA) is planning on

using for the WAAS. The WAAS will result in improvements to the efficiency of the national airspace system including direct route navigation, reduced aircraft separation, increased airspace capacity and significant fuel savings for airline and cargo industries (Hughes 1999). The savings to society envisioned from WAAS are unofficially estimated to be more than $12B to airlines and aviation agencies over the first 10 years, largely due to fuel savings (more efficient navigation with GPS) and higher capacity in airports (more accurate navigation and efficient scheduling) (Lichten 1997). The use of these new technologies in an integrated global air traffic management system would provide the same freedom to airspace users that is now being advocated as ?free flight? (Air Traffic