Аффинные преобразования евклидовой плоскости в сопряж нных комплексных координатах — страница 11
себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига [1,3]. Это преобразование называется параболическим поворотом и имеет формулу , где , , (30) Определитель найденного преобразования . Так как определитель отличен от нуля, параболический поворот является аффинным преобразованием, а так как он больше нуля, - аффинным преобразованием первого рода. Найдём собственные числа параболического поворота аналогично тому, как делали это для других рассмотренных аффинных преобразований. Найдём собственные числа λ из условия . В процессе нахождения приходим к характеристическому уравнению , но так как , характеристическое уравнение примет вид , откуда . Следовательно параболический поворот имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига. §5. Представление аффинных преобразований композициями их частных видов Выше мы имели целый ряд примеров аффинных преобразований. Мы знаем также ряд свойств, которыми обладают все аффинные преобразования. Найдём общую конструкцию, позволяющую получить любое аффинное преобразование. Такая конструкция указывается следующей теоремой: Любое аффинное преобразование может быть представлено в виде композиции родства и подобия. Докажем это утверждение. Любое аффинное преобразование имеет формулу (2) вида , где . Вспомним формулы родства и подобия. Родство задаётся равенством , где , а подобие - или . Преобразуем формулу (2) аффинного преобразования следующим образом: , её можно представить как: . (31) Очевидно, что выражение в скобках задаёт родство, а коэффициенты (a+b) и c являются коэффициентами преобразования подобия. Выясним, сохраняет ли аффинное преобразование вида (31) ориентацию плоских фигур. Внешнее преобразование (31) сохраняет ориентацию, поэтому найдём определитель внутреннего преобразования: . Очевидно, что если преобразование (2) сохраняло ориентацию плоских фигур, то его определитель положителен и определитель внутреннего преобразования композиции также положителен (тогда и композиция преобразований (31) сохраняет ориентацию плоских фигур). В противном случае– если отрицателен, то и преобразование (31) также меняет ориентацию плоских фигур на противоположную. Таким образом, мы представили произвольное аффинное преобразование (2) в виде композиции родства и подобия первого рода. Но возможно представить (2) и в виде композиции родства и подобия второго рода, тогда (2) примет вид . (32) Внешнее преобразование полученной композиции – подобие второго рода – меняет ориентацию плоских фигур на противоположную.
Похожие работы
- Рефераты
- Рефераты
- Рефераты
- Рефераты
- Рефераты