Adipic Acid Essay Research Paper SWOSU ICER98submitted

  • Просмотров 272
  • Скачиваний 12
  • Размер файла 15
    Кб

Adipic Acid Essay, Research Paper SWOSU ICER98 submitted 2/23/98 Bart Barnett, Bill McKinley, Darren Toczko, Kevin Worley Adipic acid is one of the most used chemicals in the world today, conversly, it contributes significantly to the production of nitrous oxides (NOx), a greenhouse gas. Many methods are available to produce adipic acid, with various results and potential for pollution. The following paper discusses the impacts that adipic acid has on our society and the world’s environment. At the end of the paper, is a list of some of the sources used for this topic. Any disagreements between the various sections of this article probably resulted from this being a group effort. Uses Adipic acid is a very important chemical that is used all over the world to produce

various products that people use every day. Nylon 6.6, foams, paints and tires are just a few of the products that are formed by the use of adipic acid (AAD). Adipic acid is also used as a food ingredient in gelatins, desserts and other foods that require acidulation. Nylon 6.6 is the largest outlet for adipic acid, accounting for more than 89% of the total consumption in North America. One of the leading producers, BASF, produces 70 million pounds of nylon per year. Nylon is used for everyday applications such as electrical connectors, cable tires, fishing line, fabrics, carpeting, and many other useful products. Production The consumption and production for adipic acid is dominated by the United States. Of the 2.3 million metric tons of adipic acid produced worldwide, 42% is

produced in the United State while the United State consumes 62% of total production. Western Europe produces the majority of the remaining adipic acid with 40%, and 13% in Asia-Pacific, while the other regions account for the remaining 5%. The process of producing adipic acid can be done by using different reactions. The main reaction is by the oxidation of cyclohexane into cyclohexanol and cyclohexanone. Another industry reaction is by the hydrogenation of benzene into cyclohexane and then oxidation. Adipic acid can be produced from butadiene by carboalkoxylation, but this process is not commercialized. The production of adipic acid through the oxidation of cyclohexane is done by reacting cyclohexane with oxygen for air in the presents of a catalyze of cobalt or manganese at a

temperature of 150C to 160C. This reaction forms a mixture of the cyclohexanol and cyclohexanone. The products are distilled to remove the unreacted cyclohexane which is recycled. The cyclohexanol and cyclohexanone are then reacted with nitric acid and air with a copper and vanadium catalyst. In this reaction, air is the oxidation reactant that produces the adipic acid. This reaction produces almost all of the world’s adipic acid. There are variations of this reaction’s first step producing cyclohexanone and cyclohexanol from cyclohexane. This includes the using of Boron oxide hydroxide and oxygen, or by oxygen and a catalysis to form the intermediate cyclohexyl hydroperoxide with further reaction with catalytic amounts of transition metals. The second step also can be

done by reacting cyclohexanol and cyclohexanone with only air and catalytic amounts Cobalt, copper, and manganese. This non-nitric acid process has the advantages of no risk of corrosion and no NOx are produced. The disadvantage is that succinic acid and glutartic acid is formed with the adipic acid, thus making purification a problem. Phenol can be substituted for cyclohexane. This involves the hydrogenation on the phenol into cyclohexanol with elemental hydrogen and a catalysis. From the cyclohexanol, nitric acid is used to form the adipic acid. The process of production of adipic acid from benzene is commercially used, but does not account for a major amount of the total production. This reaction, starting with benzene, produces cyclohexane as an intermediate step. Then the