Acid Rain And North America Essay Research

  • Просмотров 514
  • Скачиваний 14
  • Размер файла 18

Acid Rain And North America Essay, Research Paper In the past century, one of the greatest threats to North America’s aquatic ecosystem has been the widespread acidification of hundreds of thousands of waterways. Acid rain has effected plant and animal life within aquatic ecosystems, as well as microbiologic activity by affecting the rates of decomposition and the accumulation of organic matter. What causes this poisonous rain, and what can be done to improve North America’s water quality and prevent future catastrophes? To answer these questions, we must first examine the cause and formation of acid rain, as well as understand ways to decrease or prevent its formation. Formation of acid rain. Acid deposition, more commonly known as acid rain, occurs when emissions of

sulfur dioxide (SO2) and nitrogen oxides (NOx) react in the atmosphere with water, oxygen, and oxidants to form acidic compounds. This mixture forms a mild solution of sulfuric and nitric acid which then falls to the earth in either wet (rain, snow, sleet or fog) or dry (gas and particles) form. Approximately one-half of the atmosphere’s acidity falls back to earth through dry deposition in the form of particles and gases, and are then spread hundreds of miles by winds where they settle on surfaces of buildings, cars, homes, and trees. When acid rain falls, the dry deposited gases and particles are sometimes washed from buildings, trees and other surfaces making the runoff water combine with the acid rain more acidic than the falling acid rain alone. This new combination is

referred to as acid deposition. The runoff water is then transported by strong prevailing winds and public sewer systems into lakes and streams. Although some natural sources such as volcanic eruptions, fire and lightening contribute to the emissions of sulfur dioxide and nitrogen oxides in the atmosphere, more than 90% is the result of human activies such as coal burning, smelting of metals such as zinc, nickel and copper, and the burning of oil, coal and gas in power plants and automobiles. When does rain become acidic? Scientists determine whether rain or lake water is acidic by measuring its pH (the measure of acidity or alkalinity of a solution on a scale of 0 to 14). A value of 7 is considered neutral, whereas values less than 7 are acidic and values over 7 are alkaline or

basic. A change of one unit on the pH scale represents a factor of ten in acidity; for example, a solution with a pH of five is ten times as acid as one with a pH of six (Somerville, 1996, p.174). Normal or clean rainfall–without pollutants–is slighty acidic due to carbon dioxide, a natural gas in the air that dissolves in water to form weak carbonic acid. But rain, snow, or other moisture is not called "acid rain" until it has a pH value below 5.6 (Gay, 1992, p.44). Rainfall in eastern North America is often acidic with a pH of 4 to 5. Why is North America greatly at risk? Acid rain is more common in the Eastern U.S. and Canada than in the Western U.S. because emissions rise high into the atmosphere and are carried by prevailing winds from the west, falling out

with precipitation in the east. Some areas in the U.S. where acid rain is most common include the New York Adirondacks, mid-Appalachian highlands, and the upper Midwest. Canada shows an even greater threat with half of its acid deposition caused by a large amount of metal smelting industries in Ontario and the other half attributed to pollution from combustion in U.S. factories in Ohio, Indiana, Pennsylvania, Illinois, Missouri, West Virginia, and Tennessee. Most lakes have a pH between 6 and 8; however, some are naturally acidic even without the effects of acid rain. Lakes and streams become acidic (pH value goes down) when the water itself and its surrounding soil cannot buffer, or shield, the acid rain enough to balance its pH level. In areas such as the northeastern United