10 способов решения квадратных уравнений — страница 5

  • Просмотров 8949
  • Скачиваний 151
  • Размер файла 418
    Кб

числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2• х • 3 + 32 = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16. Таким образом, данное уравнение можно записать так: (х + 3)2 - 16 =0, (х + 3)2 = 16. Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7. 3. СПОСОБ: Решение квадратных уравнений по

формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4а и последовательно имеем: 4а2х2 + 4аbх + 4ас = 0, ((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0, (2ax + b)2 = b2 - 4ac, 2ax + b = ± √ b2 - 4ac, 2ax = - b ± √ b2 - 4ac, Примеры. а) Решим уравнение: 4х2 + 7х + 3 = 0. а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1, D > 0, два разных корня; Таким образом, в случае положительного дискриминанта, т.е. при b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня. б) Решим уравнение: 4х2 - 4х + 1 = 0, а = 4, b = - 4, с =

1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0, D = 0, один корень; Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение ах2 + bх + с = 0 имеет единственный корень, в) Решим уравнение: 2х2 + 3х + 4 = 0, а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0. Данное уравнение корней не имеет. Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0, уравнение ах2 + bх + с = 0 не имеет корней. Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого

квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент. 4. СПОСОБ:

Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x1 x2 = q, x1 + x2 = - p Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней). а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от

второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны. Например, x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0; x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0. б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 . Например, x2 + 4x – 5 = 0; x1 = - 5