1. Математическое описание связи. Модель парной регрессии — страница 3

  • Просмотров 2484
  • Скачиваний 43
  • Размер файла 74
    Кб

взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y* = f(x2 , x3 , …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные. Допущения: количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей; обрабатываемые ЭД содержат некоторые ошибки

(помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов; матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования. Функция f(x2 , x3 , …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо)

связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться. 1. Математическое описание связи. Модель парной регрессии. Любой показатель в статистике, экономике, математике и т.д. практически зависит от бесконечного количества факторов. Однако лишь ограниченное количество факторов действительно существенно воздействуют

на исследуемый показатель. Доля влияния остальных факторов столь незначительна, что их игнорирование не может привести к существенным отклонениям в поведении исследуемого объекта. Выделение и учет в модели лишь ограниченного числа реально доминирующих факторов является важной задачей качественного анализа, прогнозирования и управления ситуаций. Если в естественных науках большей частью имеют дело со строгими

(функциональными) зависимостями, при которых, еще раз повторюсь, каждому значению одной переменной соответствует единственное значение другой, то между экономическими переменными, в большинстве случаев, таких зависимостей нет. Поэтому в экономике имеют дело с корреляционными зависимостями. В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая регрессия представляет собой регрессию между двумя переменными y и x, т.е. модель вида y = f(x), где у – зависимая переменная (результативный признак); х – независимая, или объясняющая, переменная, (признак – фактор). Строится простая (парная) регрессия в случае, когда на результативный показатель, влияет единственный фактор. Множественная регрессия соответственно представляет собой модель вида: y=f(x1, x2,…,xk), где хi– признак –